Google

YouTube

Spotify

Scientific Sense Podcast

Thursday, May 12, 2016

Nutritional genetics

Research from Indiana University (1) speculates that physical traits could be substantially impacted by food. The adage that "you are what you eat," appears to work at a deeper genetic level. In low complexity biological systems, such as ants and bees, variation in food at the larvae stage seems to explain specialization at the genetic level. If true, this has implications beyond what has been observed.

Food, a complex external chemical, has to be metabolized, utilized and purged by biological systems routinely. Although it is clear that available energy content and processing efficiency will depend on the variation and complexity in inputs, the idea that food could cause genetic specialization is fascinating. More importantly, this may lead to better design of food to favorably impact physical and mental conditions, the latter possibly holding higher promise for humans.

Ancient cultures and medicines have routinely relied on food as the primary way to remedy tactical issues. The Indiana research may provide a path to propel this idea into more systematic and planned impacts.

(1) http://esciencenews.com/articles/2016/05/12/you.are.what.you.eat.iu.biologists.map.genetic.pathways.nutrition.based.species.traits

Thursday, May 5, 2016

No safety net

Recent research from Johns Hopkins (1) suggests there are over a quarter of a million deaths in the US per year due to medical errors. It is a sobering observation that future generations will look back on with anguish and perhaps, incredibility.  At the height of technology, we are slipping, not because of lack of know-how, but rather, lack of application. One preventable death is too much and the fact that medical errors are the third leading cause of death in the US, is immensely troubling.

Unfortunately, technology does not solve problems. Bigger data and faster computers are likely irrelevant if they cannot fundamentally influence decision processes and allow information flow to enhance decision quality. It is not about precision - there is no such thing - but a systematic use of all available information at the point of decision. Further, the human brain, with its inherent limitations, is unable to minimize downside risk in a regime of high utilization and volatility. A loss of life, a traumatic and life changing event for any healthcare provider, looms high but the environment simply does not allow anything more than what is tactically possible. The lack of a safety net below cascading, complex and error-prone processes suggest the need for a sudden and impactful change that most technology companies are unable to help with.

It is high time that healthcare embraced practical applications of available technologies to improve patient health and welfare.

(1) http://esciencenews.com/articles/2016/05/04/study.suggests.medical.errors.now.third.leading.cause.death.us

Saturday, April 30, 2016

Predictions with a single observation

A recent study from the University of Rochester (1) claims to improve the "Drake equation," - a constant reminder that multiplying random numbers does not provide any additional insights that are not present in the components. Now with exoplanets galore, the study that appeared in Astrobilology claims they can put a "pessimistic estimate" on the probability of non-existence of advanced civilizations, elsewhere in the universe. Just as in the previous attempt, the study suffers from traditional statistics. Most agree that a singular observation is not sufficient to predict anything, let alone the age, capabilities and the distance from Earth, where they could reasonably exist.

As the authors note, the space time window afforded to humans is too narrow to prove or disprove anything. However, the tendency to be amazed by large numbers and the multiplicative effects of such constructs, have led scientists to make non-scientific claims. Until at least a second data point becomes available, the effort expended on statistical analysis in this area is a waste of time. Availability of data is necessary but not sufficient to assign probabilities. Even those clinging to normality statistics, centuries old by now, know that it is not a good tool to make predictions.

More importantly, those awaiting ET's arrival, have almost infinite flexibility to keep on searching. If one has a hypothesis, then an accumulation of negative findings against it, regardless of how many trials are possible, has to be given due consideration. As an example, if one claims favorable conditions exist for life on Enceladus, Saturn's famous moon, such as water, oxygen and a heat source - then investing into the exploration of the icy rock is reasonable. However, if one comes out empty, it cannot be irrelevant. Just because there are trillion other rocks, in the solar system alone, that could be explored, one cannot simply ignore such an observation. At the very least, it should challenge the assumptions used by the space agency and others to justify such explorations. This "new" statistics - perhaps called "Statistics of large numbers," - where no negative observation has any utility - is very costly even though it is well positioned to pump out publications.

Scientists, engaged in irrelevant and invalid observations. aided by large numbers, may need to challenge themselves to advance the field.

(1) http://esciencenews.com/articles/2016/04/28/are.we.alone.setting.some.limits.our.uniqueness

Tuesday, April 26, 2016

Uncertain networks

Recent research from MIT, Chicago and Harvard (1) contends that smaller shocks in the economy could be magnified significantly by network effects. If true, it may provide guidance on policy that is trying to "jump start" large economic systems by targeted investments. If the transmission of such shocks across the economy is predictable, then, it could impact macro-economic decisions favorably. However, looking back with a deterministic view of network evolution, may have some downside.

Economic growth is driven by the conscious harvesting of uncertainty and not by strategic investments by bureaucrats or even corporations. Further, networks are in a constant state of evolution. Measuring GDP impact, a backward looking measure has less meaning in an economy driven by information, innovation and intellectual property. Firms, locked into the status-quo, with a rigid view of demand and supply, indeed fall prey to shocks amplified by static networks, But those, keenly aware of unpredictable uncertainty and the value of flexibility, could certainly surpass such external noise. The question is not how the present network amplifies shocks but rather how the networks are built. If they are built by organizations with a static view of the future, then they will be brittle and consumed by minor shocks. The measurement of intellectual property by patents is symptomatic of the adherence to known metrics and a lack of awareness of where value is originating from.

Empirical analyses in the context of accepted theories have less value for the future - policy or not. The field of economics has to evolve with the modern economy. Lack of innovation will always have a negative effect on the economy - no further analysis is needed.

(1) http://esciencenews.com/articles/2016/04/06/how.network.effects.hurt.economies