Tuesday, March 26, 2019

The era of bioelectronics

The most complex electromagnetic and chemical system known, the human body, so far has substantially avoided manipulation by electromagnetic means. This may be changing. Recent news (1) about a transistor design that enables integrated, real-time sensing and simulation of signals from living organisms, could lead to better diagnostics and treatment. Low cost Silicon has impeded innovation and applications in non-conventional substrates. There have been few biocompatible designs for the lack of appropriate materials and incentives.

Chemicals have been easier and in the presence of many low hanging fruits, researchers did not spend much time on alternatives. As they solved simpler problems, auto-immune diseases start to dominate the human architecture. The heart-breaking failure of a recent drug for Alzheimer's (2) is symptomatic of the end of the chemical era. The brain likely responds better to electromagnetic stimuli but contemporary pharmaceutical companies are ill-equipped to pursue this line of thought.

Simple diseases such as Hypertension and Type 2 Diabetes, that command over half of the healthcare costs in the log run, could be positively influenced by better monitoring and treatment mechanisms that are integrated into the body. CHF and other Cardiovascular events could be picked up earlier and intervened optimally by the same mechanisms. As the sun gets hotter and nastier, embedded devices in the skin could shield the body from harmful rays. Organ failures could be arrested, nutrition deficiencies could be remedied, better food and treatment regimens could be suggested and humanity could possibly move to a more advanced health regime.

It is exciting. Integrated bioelectronics with embedded artificial intelligence could be a game changer.

(1) http://advances.sciencemag.org/content/5/2/eaau7378
(2) https://www.cnn.com/2019/03/21/health/alzheimers-drug-trial-failure-aducanumab-bn/index.html

No comments:

Post a Comment